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Thermal instability of a fluid layer confined between isotropic horizontal solid walls 
leads to convection cells having no preferred horizontal direction. For thermally 
anisotropic walls, we find that certain planform orientations are preferred, in that 
convection sets in a t  a smaller Rayleigh number (Ra) for some orientations than for 
others, thus providing a means by which a regular planform may be established in 
a large-aspect-ratio layer. We consider horizontal layers of two Boussinesq, 
Newtonian fluids separated by a rigid, thermally anisotropic plate of constant 
thickness. The upper and lower fluid layers are bounded above and below, 
respectively, by rigid, thermally anisotropic plates of arbitrary thickness. When the 
bounding surfaces are thermally anisotropic, the horizontal wavevector (a) of the 
resulting convective flow has two distinct components. Thus, instead of a neutral 
curve in the (Ra, a)-plane, there is a neutral surface, and Ra depends on both com- 
ponents of a, or alternatively, on la1 and the planform orientation angle G, E [0,2n]. 
In  the isotropic case, the neutral surface is axisymmetric (i.e. invariant with respect 
to Gr), consistent with the known dependence on (a( only. 

For anisotropic walls, axisymmetry is replaced by n-periodicity in the Qi, direction, 
corresponding to invariance with respect to a 180' rotation, and the neutral surface 
has an even number of local minima. We study the dependence of G, on the middle 
plate orientation (Gp). Several different Gr-Qip topologies are found. When the 
number of local minima exceeds two, discontinuous @,-GP plots may occur. The 
dependence of Gr on the thicknesses and conductivities of the plates and fluids and 
on the orientation of the plates is discussed, with special reference to the transitions 
between different Gr - Gp topologies. 

1. Introduction 
The onset of convection in a motionless horizontal fluid layer heated from below 

and the transition to flows of increasing spatial and temporal complexity which 
occurs as the temperature difference (AT) increases have been the subject of 
considerable experimental and theoretical work. A problem of continuing interest is 
that of horizontal planform selection. 

In containers of small to moderate aspect ratio (ratio of horizontal to vertical 
dimensions), the planform (shape and orientation of the convection cells) is 
determined by the nature of the fluid and the sidewall boundaries for AT well in 
excess of the value a t  which the motionless conduction state loses its stability. 

For high-aspect-ratio containers, sidewall effects are confined to the periphery of 
the layer. Thus, although the planform shape may be determined by the fluid (e.g. 
hexagons are preferred over two-dimensional rolls if the viscosity depends sufficiently 
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strongly on temperature, as shown by Busse (1967a, b ) ) ,  the remoteness of the 
sidewalls and the horizontal isotropy of the layer in its interior provide little basis for 
the selection of planform orientation. Thus, in high-aspect-ratio layers a regular 
planform may not exist, even for AT very close to the onset of convection (Ahlers & 
Behringer 1978; Proctor & Jones 1988). 

The first experimental work concerned with convective planform selection in a 
high-aspect-ratio fluid layer was that of Chen & Whitehead (1968), in which 
convection cells having a preferred orientation (wavevector magnitude and direction) 
were generated by establishing well-defined initial conditions. Further theoretical 
and experimental investigation by Busse & Whitehead (197 1 )  demonstrated that 
two-dimensional convection cells change to a three-dimensional pattern as the 
Rayleigh number is raised to about ten times its critical value. This suggests that 
planform orientation in a high-aspect-ratio layer can be selected by removing the 
horizontal isotropy in the interior. 

In  this work, we investigate the case in which convection cells in a horizontally 
infinite fluid layer have a preferred direction due to the thermal anisotropy of the 
boundaries. The existence of a preferred horizontal direction means that the 
planform must be described by a wavevector a with components a, and ay, and that 
the magnitude a = la1 is insufficient to describe the motion. Previous convective 
stability calculations in which two components of the wavevector are required 
include the investigation by Chandrasekhar (1954) of a layer subject to a horizontal 
magnetic field. 

To this end, we have considered the onset of convection in a pair of fluid layers, 
separated by a rigid plate having finite thickness and thermal conductivity, 
previously investigated by Gershuni & Zhukhovitskii (1976), Catton & Lienhard 
(1984), Lienhard (1987), Hieber (1987), and Proctor & Jones (1988). 

We have generalized the two-fluid analysis of Catton & Lienhard (1984) and 
Lienhard (1987) by considering top and bottom walls of non-zero thickness and finite 
conductivity, by taking all three bounding plates to be thermally anisotropic, and by 
allowing the two fluid layers to have different thermophysical properties. The focus 
of our work will be to study the effect of plate orientation on planform orientation 
and the use of boundary anisotropy to control planform orientation in thermal 
convection. 

In  addition to their fundamental interest, the results may be relevant to 
applications in which spatially regular convection in a large-aspect-ratio fluid layer 
is preferred to randomly oriented convection. One such application is the 
solidification of aligned magnetic composites and other anisotropic materials from 
the melt. If the fluid is electrically conducting, establishment of a preferred 
horizontal direction can be achieved by application of a horizontal magnetic field 
(Larson 1987). The use of boundary thermal anisotropy may allow horizontal 
alignment to be effected in a weakly conducting or non-conducting fluid. 

The paper is organized as follows: In  $2, we present the governing equations. The 
motionless conduction solution is given in $3. In $4, the linear stability analysis is 
presented. The reduction to  two matrix eigenvalue problems and the solution 
technique are described in $5. The results are presented in $6 and discussed in $ 7 .  

2. The governing equations 
The geometry of the problem is shown in figure 1. Two horizontal incompressible, 

viscous fluid layers of thicknesses L, and L, are bounded by three anisotropic 
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horizontal solid walls of thicknesses L,, L, and L, with thermal conductivity tensors 
k,, k ,  and k,. The upper and lower surfaces have temperatures T, and q, respectively, 
with Tb > T,. The fluid layers may have different thermal conductivities kj ,  
kinematic viscosities v5, densities p,, and heat capacities c p j .  We assume that the fluid 
layers satisfy the Boussinesq approximation, in which we neglect thermal variations 
of the fluid properties, except density in the buoyancy force. The viscous dissipation 
term in the fluid-phase energy equations is zero for the motionless basic state and is 
absent from the linear stability analysis which we use to study the onset of 
convection. Hence, it may be omitted. 

The resulting equations governing the fluid motion are the standard Oberbeck- 
Boussinesq equations 

V * a = O ,  I 
Du 1 j = 2,4, 
- = - -Vp-f igk+vjV2e,  
Dt PI0 p50 

along with the energy equations 

- K~ V2T, j = 2 ,4 ,  
DT 
Dt 
-- 

and equations of state pj = pjo[ 1 - p5( T -  To)] in the fluid layers, where ( )o denotes the 
reference state. In  the solid layers, we have 

2nl 
U 1  

(PC ) - = V * ( k , V T ) ,  j= 1,3,5.  
at 

We impose the no-slip condition 

mi+. n r  9 t \  - CI I9 F;\ 
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a t  the solid walls. The thermal boundary conditions are 

T(x, y , z , t )  = T, a t  z = zo, 

T ( z , y , z , t )  = Tb at  z = z5. 

We also require that the temperature and normal component of the heat flux be 
continuous a t  each interface : 

T(x, y, z ,  t )  continuous a t  zl, z2,  z3,  z4, 

n . q(x, y, z ,  t )  continuous a t  zl, zg, z3,  2,. 

(2.6) 

(2.7) 

3. The basic state 
Before proceeding to  the analysis of the convective stability problem, we consider 

the conductive base state, in which v = 0. We then have steady one-dimensional 
conduction in the solid and motionless fluid layers, so that 
and s j , 2  are constant in each layer. From elementary considerations (Carslaw & 
Jaeger 1959), we obtain temperature profiles for regions 1-5 : 

Region 1 

= si, z + sj ,  2 r  where sj, 

where we have defined y2 = k 4 / k 2 ,  hj = Lj /L4 for j = 1 , 2 , 3 , 5 ,  and y j  = k4/krz , i  for 
j = 1,3,5.  

4. Linear stability analysis 
To determine the conditions under which disturbances grow, we superimpose 

perturbations T', p', and v' on the motionless base state, substitute into (2.1)-(2.4), 
cancel terms associated with the motionless solution, and linearize (as is appropriate 
for infinitesimal disturbances) to obtain the disturbance equations 
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for the fluid layers. For the anisotropic solid plates, we have simply 

ay 
p ,  at 

(PC ) -=V*( (k ,VT’) ,  j= 1,3 ,5 .  

27 1 

The boundary conditions for the disturbances are the same as (2.5)-(2.7), with 
T’(z,y,zo, t )  = 0 and T’(x, y,zs,t) = 0. 

To eliminate the pressure, we twice take the curl of each momentum equation and 
then take the vertical component. We obtain non-dimensional equations in the 
j t h  fluid layer by using t,he scaling : velocity vj/Li ; temperature A? = T(z , )  - T(zjP1) ; 
time L 3 / K j ;  length L,. The scaled coordinates are defined by z; = ( z - z i ) / L i  for 
zi < z < ZiPl. 

The governing non-dimensional equations for the fluid layers become 

where Vg: = a2/i3xi2 + a2/ayi2 is the horizontal Laplacian, Ra, = /Ij AT,L? g / ( v j  K , ) ,  

Pr, = v , / K , ,  for j = 2,4 ,  and all quantities are non-dimensional. The governing 
equations for the solid walls are 

The disturbance satisfies the boundary conditions 

W;(X;, y;, O , T ~ )  = W;(xi:;, y;, 1,7.j) = 0, j = 2 ,4 ,  ( 4 . 4 ~ )  

(4.4b) 

( 4 . 5 ~ )  

(4.5b) 

where e m n , j  = k m n , j / k r z , j .  

Equations (4.1)-(4.3) with boundary conditions (4.4)-(4.5) constitute a linear 
homogeneous partial differential equation system. To solve these equations, we 
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apply a Fourier decomposition to the velocity and temperature disturbances. The 
base state depends only on the vertical coordinates zi, so the response to any 
disturbance will be periodic in the (x', y')-plane and can be expanded in a set of 
normal modes. The amplitudes of arbitrary temperature and velocity disturbances 
may be represented as 

O;(x;,y;,z;,T,) = S j ( z ~ ) e x p [ a ~ j + i ( a , j ~ ~ + a y i y ~ ) ] ,  j = 1,2 ,3 ,4 ,5 ,  

W;(x; ,y i , z ; ,~ , )  = Uj(z~)exp[a~j+i(a2j3C;+ayjy~)], j = 2,4, 

where a is the temporal growth rate, A is the wavelength common to each layer, and 
S, and U, satisfy 

(D!-a!)(Di-aj2-a/Pri) Uj-aj2RaiSi = 0, j = 2,4, (4.6) 

( D ~ - u ! - ~ ) S ~ + U ~  = 0, j = 2,4,  (4.7) 

D; 'i + "(azj € 2 2 ,  f + a y j  ~ y z ,  j )  Dj 'j - (€22. j a% + ~y y , j a$ + 2 ~ z  y , j azj ayj) Sj = 
j = 1,3,5,  (4.8) 

subject to the boundary conditions 

U,(O) = U,( 1) = D, U,(O) = D, Ui(l) = 0, j = 2,4,  (4.9) 

Sl(l) = X5(0) = 0, (4.10) 

( 4 . 1 1 ~ )  

D,~,(0)+i(~2z,1a,,+Eyz,l~yl)S1(0) = D2&(1), (4.11 b )  

D3 '3( l )  + i ( E 2 Z ,  3 'Z3+'yZ, 3 'y3) '3( l )  = DZ '2(O), ( 4 .11~)  

D3 '3(') + i ( E 2 Z ,  3 aZ3+'yZ, 3 ay3) '3(O) = D4S4(1)> (4.11d) 

D5 '5( l )  +i(E,Z, 5 a25+EyZ. 5 ay5) '5(l) = D4S4(0), (4.11 e )  

where the total wavevector in layer j is defined as ai = aZji+ayjj, with magnitude 

ui = 
Since u depends analytically, and therefore continuously, on the parameters of the 

problem, the loss of stability must correspond to one or more temporal eigenvalues 
crossing the imaginary axis and moving from the left half-plane to the right 
half-plane. I n  general, the neutral solutions of (4.6)-(4.11) may have I m ( a )  = 0 
(corresponding to steady onset) or Im (a) =k 0 (corresponding to oscillatory onset). 

If it  can be shown that only steady onset need be considered, then the 'principle 
of exchange of stabilities' is said to obtain. To show that only Im (a) = 0 need be 
considered, i t  is sufficient to show that for non-negative Ra,  and Ra,, all of the 
neutral solutions correspond to Im (a) = 0. 

To proceed, we multiply the energy equation for the j t h  fluid layer by the 
conjugate of S,, multiply the conjugate of the j t h  energy equation by Sj, and 
subtract. Similarly, we multiply the momentum equation in layerj  by the conjugate 
of U j ,  multiply the conjugate of the j t h  momentum equation by U,, and subtract. 
After eliminating from these two equations terms involving the product of Ui and Sj 
and their conjugates, we integrate the resulting equation from zero to one. Using the 
energy equations for the solid walls and the boundary conditions we obtain an 
equation of the form Im (a) [I+ J,Ra,+ J4Ra4] = 0, with I ,  4, and J4 positive definite, 
from which it follows that Im (a) = 0 if Ra, and Ra, are non-negative. 

+ a$, and D, = d/dz;. 
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Hence, the momentum and energy equations (4.6)-(4.8) become 

(D3-h32a;)2U,-h3a~6,RaS, = 0, j = 2,4,  (4.12) 

(D;-h,2a;)Sj+U, = 0, j = 2 , 4  (4.13) 

in the fluid layers. For the solid plates, we have the energy conditions 

DI” s, + 2iW, ax4  %!&I + h, ay4  %,,I D, s, 
- { ~ ~ ~ , , h ~ a ~ ~ + t ~ ~ , ~ h ~ a l y ~ + 2 ~ ~ ~ , ~ h ~ a ~ ~ u ~ ~ } S ~  = 0, j = 1,3,5.  (4.14) 

The dimensionless quantities 6, in (4.12\ are the ratios 

Sj = Ra,/Ra, j = 2,4,  (4.15) 

where Ra is the overall Rayleigh number defined as 

(4.16) 

From (4.15) and (4.16), we obtain 

1 

[ 1 Y  6, = 
1 + hl y1 + h, y2 + h, y3 + h, ys 1 +hl + h, + h, + h, 

and 6,  = y2 h4, Ed,, where B = (p2 K~ v4)/(p4 K~ v,). We have eliminated all but one 
wavevector in (4.12)-(4.14) by writing 

aj = hja4. (4.17) 

We note that although the thermal anisotropy of the walls will serve to  orient the 
planform, the linear stability analysis still does not select the planform (e.g. rolls or 
hexagons). For the sake of discussion, we shall describe the planform in terms of 
oriented two-dimensional rolls, with a ‘roll angle’ defined by 

The solutions of (4.12)-(4.14) subject to (4.9)-(4.11) have eigenvalues Ru = R a  (a,) 
with associated disturbances S, and U, as eigenfunctions. The eigenvalues R a  depend 
on Gr and the magnitude of a,. I n  other words, the Rayleigh number is a function 
of ux4 and uy4. The variation of R a  with a4 defines a neutral surface (a = 0 ) ,  on which 
the minimum value of Ra is defined as the critical Rayleigh number. 

5. Solution of the eigenvalue problem 
5.1. Reduction to a coupled pair of matrix eigenvalue problems 

Lienhard (1987) has developed an exact technique for determining the critical 
Rayleigh number governing the onset of convection in an arbitrary number of 
horizontal fluid layers separated by thermally isotropic solid walls of arbitrary 
thickness and conductivity. Taking the bounding plates to be thermally anisotropic 
considerably increases the complexity of the problem. Therefore, an approximate 
solution technique will be developed. 

Equations (4.12)-(4.14) subject to (4.9)-(4.11) constitute a linear homogeneous 
system of ordinary differential equations. To solve these equations, we employ a 
novel Galerkin method. 
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For the solid plates, the solutions of (4.14) are 

where 

, j = - ihj[az4 czz, j + my4 ~ y z ,  jI * hj[ - (a24 c x z ,  j + ay4 ~ y z ,  j ) 

-t (%z,j  a L  + cUy,j ai4 2%y,j ‘ 4 4  a,,)]’ 

a n d 4  and aj are constants computed by application of (4.10) and (4.11). From (4.101, 
we get a, = -exp (A+,,-h-,,) and a5 = - 1. The other eight thermal boundary 
conditions (4.11) can be reduced to 

(5.1 a) 

(5.lb) 

( 5 . 1 ~ )  

(5. ld)  

where the coefficients A,,, AZ2, AZ3, and A,, are given in Appendix A. 
For the fluid layers, the velocity perturbations U j ,  defined on their respective 

intervals [0,1], will be expanded in terms of beam functions (Chandrasekhar 1961) 

which form a complete orthogonal set and satisfy the no-slip condition a t  the walls. 
The even and odd functions are 

cash xm(d - 2) cos xm (2’ - 2) , m = & ( n + l ) ,  n = 1 , 3 , 5  ,..., Wn(Z‘) = - 
cash ( i x m )  ‘08 (2Xm 1 
sinh p m ( d  - +) sin p m ( d  -2) , m = ~ ,  n = 2 , 4 , 6  ,..., Wn(Z’) = - 

sinh ($Lm) sin ($Lm) 

where x m  and ,urn satisfy the transcendental equations 

tanh ix + tan ix = 0, coth % - cot $p = 0. 

The corresponding disturbance temperatures in the fluid layers can be expanded 
as 

(5.3) 

where each Sj is defined on its respective interval [0,1], and the functions P,,(z;) are 
obtained by solving (4.7) for each Wn(z;) in (5.2). 

We substitute (5.3) into the vertical momentum equations (4.6) to get 

(D,”-h,”a;)P,j(~;)+ W,(Z;) = 0, j = 2,4. (5.4) 

Rewriting the boundary conditions by substituting (5.3) into (5.1), we obtain 

DZf‘n2(1) = 4 l p n z ( 1 ) ,  (5.5a) 

D,Pn2(0) = Az2(a3)pn2(0), (5.5b) 

D4‘n4(1) = A23(+3)Pn4(1)2 (5 .5c)  

D4 f‘n4(0) = A24 pn4(O). (5.5d) 
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The solutions of (5.4) are 

Pnj = $nj(z;)+Cnjcosh(h,a,z;)+DLisinh(h,a4z;): 

where the non-homogeneous part is 

n =  1,3 ,5  ,..., 

sin p,( z; - i) 
- m=&, n = 2 , 4 , 6  , . . . .  

sinh p,(z; - 8) 
’n’(”) = - (pk - hj” a:) sinh (ip,) (& + hj” a:) sin (b,) ’ 

The disturbance temperature functions Pnj(z;) are chosen to satisfy the boundary 
conditions ( 5 . 5 ~ 4 ) .  Substituting (5.2) and (5.3) for each layer into the momentum 
equation (4.6), multiplying by W,, and integrating from 0 to  1, we obtain a matrix 
eigenvalue problem 

for each fluid layer, where the elements of the matrices Bj and C, are given by 

[C,(Ra) - ag B,(Ra)] A, = 0, j = 2,4 

q m ,  n) = -X,1(m, n) +RaXj,(m, n), 

(5.6) 

C j (m ,  n) = Tl(m, n)-Ra q,(m, n), 
the elements of X and Y are defined in Appendix B, and A, is a vector of coefficients 
(cf. (5.2)) in the j th  layer. 

5.2. Solution of the coupled matrix eigenvalue problems 

For arbitrarily chosen values of the wavevector magnitude in the fourth fluid 
layer (a,) and the roll angle ((Dr), we compute a, from (4.17) with components 
a,, = aicos@, and au, = ajsin(Dr. The unknown parameters a3 and Ra appear 
linearly in (5.6). To compute Ra for a given wavevector a4, we could guess an initial 
value of Ra, and compute the sets of eigenvalues a3 of (5.6) for j = 2 and 4. We could 
then iterate on Ra until the two eigenvalue problems have a common eigenvalue. For 
a given a,, we would then have a point on the neutral surface. 

This procedure was implemented in a computer code. Unfortunately, it was rather 
expensive, so a more efficient technique was developed. We begin with a general 
outline of the procedure. Given the linear dependence of each matrix element in (5.6) 
on a3 and Ra, we can write the determinantal polynomial for each j as 

N 

0 = IC@) - a3 Bi(Ra)l = n [q@a, a,) -a3 C,@a, a,)] ,  j = 2,4,  (5.7) 
m-1 

where wmi and cmi are polynomials in Ra. On the basis of extensive numerical 
experimentation, i t  is clear that in (5.6) only one eigenvalue a3 in each case 
( j  = 2,4) depends on Ra and a,. The others &re identical and independent of Ra and 
a, to  within machine precision. Thus, we can write (5.7) as 

(5.8) 

where, for j = 2 and 4, H j  are eigenvalues of (5.6) having algebraic multiplicities of 
N-1 and which do not depend on Ra and a4. We then regard (5.8) as a pair of 
polynomial equations in a3 and Ra, from which a3 may be eliminated. The resulting 
equation in Ra is of polynomial type, and is easily solved using standard numerical 
techniques. The details of the above procedure are as follows. 

&,@a, a4, a3) ii (Hj-a3)N-1[w,,(Ra, a,) - a3 CNj(Ru, a,)] = 0, j = 2,4,  
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We fix Ra, compute eigenvalues a3 of the matrix eigenvalue problems (5.6) for 
j = 2 ,4  and note the constant eigenvalues H ,  and H,.  We arbitrarily choose a3. The 
determinant ICj-a3 BjI is evaluated at N values of Ra, and its characteristic 
polynomial is computed using the technique of Pacagnella & Pierobon (1975). The N 
values of Ra required in the latter procedure are chosen as 

2(m-l)ni 
R a m = e n p [  N +  1 1, 1 < m < N .  

We then write Q N j  as 
N 

&~j (Ra ,%,k )  = rk,mRarn, 
m=o 

where the rk,m are constants. For two arbitrarily sclected values of a3, we have 

I N 

From (5.9), for k = 1,2, we compute w N j  and C N j  and use (5.8) to obtain 

On the neutral surface, a3 must be the same in (5.6) f o r j  = 2 and 4, from which fact 
we obtain a single equation in Ra:  

(5.10) 

To determine the Rayleigh number on the neutral surface we rewrite (5.10) as a 
polynomial equation, which is solved by a standard technique (Jenkins & Traub 
1972). 

Our main interest is to minimize Ra as a function of a,, since this gives the Ra a t  
which the multilayered system first becomes linearly unstable. To locate the 
minimum of Ra (a,), we first note that, because of symmetry, one need only consider 
Qr in the range 0 < Qr < x (or any other half of the wavevector plane). We then find 
the minimum value ofRa as a function of a4 for K+ 1 evenly spaced values of @,.. This 
is accomplished using a three-point iteration scheme. For each ar, we first compute 
neutral values of Ra a t  three values of a, (an initial guess is made for a,; the second 
and third values are chosen by decreasing and increasing the initial value by 2.5 Yo). 
A parabola Ra, = uo + url a, + u2 a: is fitted to these three points, and subsequent 
iterates are obtained by setting dRa,/da, = 0. The three values of a, are updated and 
the iteration is continued until the relative change in a, a t  the minimum is less than 
lo-,. This minimization process is performed for the K +  1 values of Gr. The smallest 
of these Rayleigh numbers, and the wavenumber a,, min and roll angle Or, min at  which 
this Ra occurs are noted. We then fix a, = and compute the Rayleigh numbers 
a t  M + 1 equidistant values of Qr in the range [Qr, min - AGr < Qr < cDr, min + A@r], 
where AQr = x / K .  We next select the smallest of these Rayleigh numbers and its 
associated @,,. We then fix the roll angle, and continue this 'alternating direction' 
iteration until the relative changes in Ra, a,, and Or are less than lop7, 
respectively. 

and 
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6. Results 
When t.he solid boundaries are isotropic, the Rayleigh number depends only on the 

magnitude of the wavevector. Thus, the neutral surface is axisymmetric about 
aq = 0 and the relation Ra = Ra(a,) defines a neutral curve. However, for thermally 
anisotropic solid boundaries, the Rayleigh number is a function of both the 
magnitude of the wavevector and the planform orientation, as expressed through the 
roll angle. Figure 2 displays a typical neutral surface for highly anisotropic solid 
boundaries. 

Consideration will now be given to how the planform orientation depends on plate 
orientation. In what follows, we have chosen E , , , ~  = eyz,$ = 0 (i = 1 , 3 , 5 )  so that the 
thermal conductivity tensor of each plate can be rendered orthotropic by rotation 
about the z-axis. We define a 'plate angle' G, in terms of the angle between the 
principal axes of the conductivity tensors of the middle and top plates. A plate angle 
of 0" corresponds to the situation in which the largest components of the conductivity 
tensor of the middle and top plates are aligned. 

The plate materials initially considered are graphite fibre epoxy for layers one and 
five. and pyrolytic graphite in the middle. Both materials are transversely isotropic, 
with thermal conductivity ratios ( k , , / k L )  of 12.76 and 342.1, respectively. Here, k,, 
and k, are the thermal conductivities in planes parallel and perpendicular, 
respectively, to the plane in which the conductivity is isotropic. For both fluid layers, 
we select water with the reference temperature taken as 15 "C. With the conductivity 
ratios y,, yz ,  y,, and y5 thus specified, we fix the thickness ratios h,, h,, and h,, and 
vary the thickness ratio h, of the middle plate. 

For h, = h, = 0.25, attention will first be directed to the case h, = 0.01. The roll 
angle as a function of (the middle layer) plate angle is shown in figure 3 for various 
values of h,. As h, is varied, the topology of the Gr-Gp plots changes. I n  figure 3 (a), 
for h, = 2.5 x lop4, there is an almost sinusoidal variation of the roll angle with plate 
angle. We note that, in general, the roll orientation may be expected to depend on 
the anisotropy of the three solid plates in a fairly complicated, nonlinear fashion. In 
this first case, the middle plate is very thin. Therefore, of the terms involving the 
thermal anisotropy of the middle plate, only the first-order (i.e. linear) terms affect 
the planform orientation. Owing to the thinness of the middle plate, Gr is primarily 
determined by the outer plates. Thus, the effect of varying cDp is to apply a weak 
modulation to the constant value of @jr which, for an isotropic middle plate, would 
be determined by the alignment of the top and bottom plates. As the middle-plate 
thickness increases (figure 3 b ) ,  the sinusoidal variation of cDr becomes distorted 
owing to the effects of higher-order terms in the relationship between Qir and the 
properties and orientation of the middle plate. Finally, we note that cDr is a n-periodic 
function of Qi,, owing to the 180" ambiguity in the definition of the orientation of a 
set of two-dimensional rolls. 

A three-dimensional plot of the neutral surface (Ra as a function of a,) is shown in 
figure 4 for h, = 1.0078125 x lop3. We see that the surface has two local minima. As 
the thickness of the middle plate increases, a ' crossover ' of these two minima occurs, 
in which the global minimum shifts from one local minimum to the other. The cDr-cDp 
plot shows two discontinuities in each n-period, each of which corresponds to a 
switching of the global minimum on the Ra-a, surface between two local minima. 
There are four branches in a 2n-period. As h, is increased further, two of the branches 
shrink (figure 3 4  and ultimately merge with the other two branches (figure 3e) .  Note 
that any of the four branches may in its entirety be shifted up or down by 180", 
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czy,l = 0.75, E ~ ~ , ~  = 0.5, E , , , ~  = 1.6, E , , , ~  = 0.35, E ~ ~ , ~  = 0.6, E , ~ , ~  = 0, = 0.8, E , , , ~  = 1.759, 
c , , .~  = 0.45, cyr.5 = 0.7, cZus5 = 0.45, E ~ ~ , ~  = 0.7, B = 1 : (a ,  b )  show the  same surface from two 
different views. 

owing to  the previously discussed 180" ambiguity. Thus, at the value of h, at which 
two of the branches disappear, the remaining two branches can be plotted separately 
with two jumps, or as the smooth curve shown in figure 3 ( e ) .  When the middle plate 
is very thick, it exerts a very strong influence on the roll angle. In that case, @, is said 
to be slaved to cDP (figure 3 f ). 

The situation is somewhat different for h, = 1, as shown in figure 5 .  The two 
limiting cases, when the middle plate is very thin (figure 5 a )  or very thick (figure 5f), 
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FIGURE 4. Ra-a, neutral surface for QP = 69", h, = 0.25, h, = 0.01, h, = 1.0078125 x 
h, = 0.25, y1 = 0.699, y, = 1, y3 = 0.107. ya = 0.699, E = 1. Plate materials are as in figure 3. 
The maximum conductivities of the top and bottom plates are in the direction of the x-axis. (a ,  6) 
show the same neutral surface from two different views. 

are the same as for smaller h,. However, in the range of h, for which the Or-Op plot 
is discontinuous, the roll angle on the branches which ultimately disappear is near 0" 
(or 180") for h, = 1 instead of near 90" as for smaller h,. 

Other calculations were conducted and the results are presented in figure 6 for a 
different configuration. Here, we select pyrolytic graphite for the outer plates, 
graphite fibre epoxy for the middle plate, and water for both fluid layers. For 
sufficiently large h,, Qr is again slaved to Op (figure 6 a ) .  As h, decreases, Or remains 
slaved to djp, except near dj,, = 0" = 360" and 180", where Op has a minor influence 
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on Qr, which is primarily determined by the orientation of the top and bottom plates. 
Decreasing h, further leads to a broadening of the region in which cPr is relatively 
independent of cPp. At a critical value of h,, a discontinuity appears, as shown in 
figure S ( c ) .  Again, there are four branches in each 27c-period. The two which are 
remnants of the original (large h,) curve will be referred to as the slaved branches. 
The other two (approximately) constant branches are a t  approximately Qr = 270" 
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(for Qj, in the vicinity of 180") and at 90" (=  450") for Qjp near 0" (=  360"). As h, is 
further reduced, the region in which Qjr is determined by the outer plates grows, as 
does the magnitude of the jump in Qr a t  the discontinuity. When h, is very small, we 
reach the other limiting case in which the slaved branches disappear completely and 
Qr is primarily determined by the outer plates for all values of Qj,. 
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We observe that the middle plate sometimes exerts a much stronger influence on 
the planform orientation than do the top and bottom plates. Figure 6 (a )  shows that 
when the thicknesses of all three plates are equal, and the top and bottom (pyrolytic 
graphite) plates are much more anisotropic than the middle (graphite fibre epoxy) 
plate, Qr is completely slaved to QP. Figure 6(b) shows that, when the thickness of 
the middle plate is drastically reduced, the orientation of the middle plate still 
controls Qr for almost all values of QP. 

Figure 7 shows Qr as a function of GP for various values of h,. In  this case, all three 
plates are of the same material, with the top and bottom plates oriented in the same 
direction. When h, is sufficiently large, @r is slaved to GP, as usual. For smaller 
h,, Gr is modulated slightly about the linear dependence on QP, as shown in figure 
7 (a).  As h, decreases, the departure from linearity increases, and the approximately 
piecewise linear dependence of @r on Qp shown in figures 7 (b )  and 7 (c) develops. The 
sharp changes in slope which occur at 90" and 270' become discontinuities as h, is 
decreased still further, as shown in figure 7 (d) .  In  this case, the Gr-aP plot has two 
branches. For still smaller values of h, another discontinuity develops, yielding the 
four-branch Qr-QP plot shown in figure 7 ( e ) .  Further decreases in h, lead to the 
development of additional discontinuities, as exhibited by the eight-branch Gr-QP 
plot shown in figures 7 ( f )  and 7(g) (which shows the details of the range of OD 
in which the additional branches develop). When it, is reduced further, the 
discontinuities eventually disappear (figure 7 h) and the limiting case of small 
sinusoidal variation of Gr about 90" is reached (figure 7 i ) .  

We also consider the case in which the directions of maximum conductivity in the 
top and bottom plates differ by 90". In  this situation, the limiting case for very small 
h, is not an approximately sinusoidal variation of Qr about 90", but is almost 
piecewise constant, with four branches near Gr = 90°, 180", 270", and 360" ( =  O"),  as 
shown in figure 8(a). From figure 8 and the numerical results, it is seen that the 
discontinuities always occur a t  Qp = 45" and 135". Since the top and bottom plates 
have the same thickness, and the middle plate is very thin, the roll orientation is 
basically determined by the top plate for -45" < GP Q 45", and varies, with small 
amplitude, about 90". In  the range 45" Q GP < 135", the bottom plate determines the 
planform orientation, with Qr varying about 180". We thus see that, centred about 
90°, 180°, 270", and 360°, there are 90" bands of @jP for which ar is almost constant 
and determined by the orientation of either the top or bottom plate. As h, increases, 
the discontinuity in Qr decreases and the variation along each branch increases. 
When h, is increased further, the discontinuities eventually disappear, as shown in 
figure 8 ( d ) .  For h, sufficiently large, the middle plate determines the planform 
orientation, and Dr is slaved to  QP. 

Consideration will now be given to how the limiting case of very small h, is affected 
by the relative orientation of the top and bottom plates. We consider the situation 
in which all three plates are made of the same material. For very small h,, the 
limiting case of almost sinusoidal variation of Qr about 90" was shown in figure 7 (a)  
when the top and bottom plates were identically oriented. In  figure 8(a) ,  the limiting 
case of Gr being almost piecewise constant about go", 180", 270", 360" was shown for 
the case in which the directions of maximum conductivities of the top and bottom 
plates differed by 90". Now we fix the thickness of the middle plate (h, = 4 x 
and present results in figure 9 for different orientations of the bottom plate with 
respect to the top plate. First we consider the case in which the angle (A@) between 
the directions of maximum conductivities of the top and bottom plates is 10". The 
limiting case of small A@ is one of small, almost sinusoidal variation of Or about 95", 
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as shown in figure 9(a ) .  This is a 90" shift from one-half the sum of the angles (0" and 
10") associated with the directions of maximum conductivity of the top and bottom 
plates. As A@ increases, the amplitude of the variation increases, as shown in figures 
9 ( b )  and 9(c)  for A@ = 80" and 83", respectively. As A@ increases further, one 
discontinuity in each n-period develops, as shown in the two-branch @r-@p plot of 
figure 9 (d) .  When A@ is increased still further, another discontinuity develops, which 
yields the four-branch @,-GP plot shown in figure 9 ( e ) .  For larger values of A@, the 
variation on each branch gets smaller and the jump gets larger, as shown in figures 
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4.022290039 x lo-', ( i )  8 x lo-,. 

Q ( f )  and 9(g). As A@ is increased to  90°, the limiting case of almost piecewise 
constant Qr variation about go", 180°, 270", and 360" is reached. 

To complete the presentation of our results, we consider two more cases in which 
layers two and four are occupied by different fluids. In  each case, the fluids 
considered are silicone oil in the second layer and water in the fourth. 

In one case, the top and bottom plates are graphite fibre epoxy, and the middle 
plate is pyrolytic graphite. The results are presented in figure 10 for fixed values of 
all the thickness ratios except h,, which is varied. We obtain essentially the same 
sequence of djr-djp plots as was shown in figure 3, when both fluid layers were water. 

In  the ot,her case, the top and middle plates are made of graphite fibre epoxy, and 
the bottom plate is pyrolytic graphite. We again fix all parameters except the middle 
plate thickness ratio h, and present the results in figure 11 for different values of h,. 
The results are very similar to those obtained for the cases shown in figure 5. 

The results depend on 24 dimensionless parameters, so that a complete exploration 
of the parameter space is not feasible. 

10.2 
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96.0 

95.5 

h 

P e 
2 95.0 s 
eb 

94.5 

94.0 

140 

135 
h 

e, e 
2 s 
6- 

130 

125 

180 

150 
h 

0 e 
2 s 
e- 

120 

I I 

144 

138 

h 

0 e 
? 132 
s 
d 

126 

120 

180 

150 
h 

0 e 
2 
a, 
e- 

120 

90 
90 180 270 360 

aP (degrees) 

Qjp (degrees) 

FIQURE 9(a*). For caption see facing page. 



288 

I10 

100 

h 

0 e 
?? 90 
P, 
a" 

80 

70 

140 

115 

h 

i? 
E 
$ 90 

a_ 
a' 

65 

40 

A .  J .  Pearlstein and A .  Oztekin 

Op (degrees) 

120 

105 

h 

!! 
2 90 s 
3 

75 

60 

360 r 450 
0 

360 - 

h z 
2 270 - s 

90 I 

0 90 180 270 360 
Op (degrees) 

FIGURE 10. Qr-cDP plots for various h, for h, = 0.25, h, = 0.01, h, = 0.25. y1 = 0.699, y2 = 3.93862, 
y3 = 0.107, y, = 0.699,E = 4.42482. Plate materials are as in figure 3. The maximum conductivities 
of the top and bottom plates are in the direction of the z-axis. @jP = 0" corresponds to the maximum 
conductivity of the middle plate being in the direction of the x-axis. (a) h, = 2.5 x ( 6 )  
5.46875 x ( e )  6.953 125 x ( d )  8.4375 x ( e )  2.625 x lo-,, (f) 5 x lo-,. 



450 

360 

h 

e, e 
2 270 s 
aL 

180 

90 

A, 

450 

360 

h 

0 e 
2 270 
9 
@- 

1 80 

90 

450 

360 

h 

B e 
2 270 
9 
a- 

180 

Selection of convective planform orientation 289 

/ 

/ 

450 

360 

h 

E 
8 270 
9 
a- 

180 

90 

/ 

I 

70 
I 0 90 180 270 360 

'BP (degrees) 

FIGURE 1 1 .  @J-@~ plots for various h, for h, = 0.2, h, = 0.5, h, = 0.01, y1 = 0.699, y2 = 3.93862, 
y, = 0.699, y, = 0.107, B = 4.42482. The top and middle plates are graphite fibre epoxy and the 
bottom plate is pyrolytic graphite. The maximum conductivities of the top and bottom plates are 
in the direction of the z-axis. GP = 0" corresponds to the situation in which maximum conductivity 
of the middle plate is in the direction of the z-axis. (a )  h, = 2.5 x (c) 
4.0625 x lW4, ( d )  3.671 875 x 

( b )  5.625 x 
( e )  3.4765625 x (f) 3.281 25 x 



290 A .  J .  Pearlstein and A .  Oztekin 

7. Discussion 
As shown in the previous section, the middle-plate thickness ratio h, is an 

important parameter in determining how the planform orientation changes with the 
orientation of the middle plate. For all sets of parameters considered, two limiting 
cases are obtained, for h, very large and very small. As h, varies, a smooth transition 
between the two limiting cases occurs for all cases presented in $6. 

For very small h,, there are several limiting Gr-Qp topologies. In one, when the 
maximum conductivities of the top and bottom plates are aligned, Qr undergoes a 
small-amplitude, almost sinusoidal variation about 90" as Gp varies from 0" to 360". 
When the middle plate is very thin, its thermal anisotropy affects the planform 
orientation very little. Therefore, Gr is determined by the orientations of the top and 
bottom plates. When the top and bottom plates are oriented in the same direction, 
with their maximum conductivities in the x-direction, the planform is oriented so 
that the roll axes are aligned in the y-direction (near Gr = 90"). The physical 
explanation is as follows. When the rolls are oriented with their axes perpendicular 
to the direction of maximum conductivity in the plates, conduction in the plates 
makes its maximum possible contribution to the horizontal transport of heat in the 
fluid/solid assembly, and hence convection can be maintained a t  a lower Ra for this 
planform orientation than for any other. Therefore, the planform is oriented in the 
direction which maximizes the horizontal conduction in the fluid/solid assembly. In 
this particular physical configuration, Gr varies about 90" with small amplitude. 

However, when the top and bottom plates are aligned so that the directions of 
their maximum conductivities differ by 90" (figure 8), the limiting case for very small 
h, is an approximately piecewise constant variation of Qr with Gp, having four 
branches. For this configuration, the top and bottom plates are identical, except for 
their orientation. Although the middle plate is very thin, its orientation provides 
sufficient anisotropy to align the planform in the direction for which the rolls can be 
maintained a t  the smallest possible AT. In  the range -45" < djZp < 45", the rolls are 
aligned with their axes almost exactly in the y-direction. In  this situation, the 
horizontal heat transport is maximized when Qr is near 90". On the other hand, in 
the range 45" < Gp < 135", c#jr varies slightly about 180" ( =  0") since the horizontal 
heat transport is maximized for rolls aligned in this direction. 

In all of the calculations presented in $6, the roll angle is slaved to the plate angle 
for sufficiently large h,. When the middle plate rotates once, Gr also rotates once. For 
all cases discussed in $6, the middle plate is oriented so that Gp = 0" corresponds to 
the largest component of its thermal conductivity being oriented in the s-direction. 
Therefore, for very large h,, the planform is oriented in the y-direction for @jP = 0", 
and as the orientation of the middle plate changes, Gr varies almost linearly, with a 
90" shift. 

The predictions of the present work concern the effect of thermally anisotropic 
boundaries on convective planform orientation in horizontally unbounded fluid 
layers. In any real experiment, the planform orientation will also be influenced by the 
sidewalls, horizontal variations in the boundary conditions, and a number of other 
experimental details. In any case, the planform and orientation actually realized will 
correspond to the lowest value of Ra a t  which convection can be sustained. 

To provide a feel for the experimental realizability of some of our more interesting 
results, we show in figure 12 the relative difference in Ra between the two local 
minima responsible for the discontinuous Gr-Gp plot shown in figure 6 ( c ) .  Here, the 
top and bottom plates are pyrolytic graphite, the middle plate is of graphite fibre 
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FIauRE 12. Relative difference between Rayleigh numbers a t  the two local minima on the Ra-a, 
neutral surface shown in figure 6(c ) ,  for the same materials and thickness ratios. Note that, except 
for a range of cDp centred about 90" with an approximate width of 42", and two very narrow ranges 
near cDD = 24" and 156", the neutral surface is unimodal. 

epoxy, and Racrit = 4.304 x lo4 is the global minimum on the Ra-a, neutral surface. 
The difference in Rayleigh numbers is a bit more than 6%. This can be contrasted 
to  the degree to  which sidewall effects have been eliminated in measurements of the 
critical Rayleigh number in the standard Rayleigh-Be'nard problem @acrit z 
1707.762.. .). In  a cell having aspect ratios of 8.0 and 21.3 (width divided by height 
and length divided by height, respectively) and in one having aspect ratios of 12 and 
32, Farhadieh & Tankin (1974) determined Racrit = 1700 k20. This corresponds to a 
maximum deviation (or uncertainty) of about 1% from the ideal result for a 
horizontally infinite layer. Thus, for careful experiments in rectangular cells of 
moderate aspect ratio, a difference in the local minimum values of Ra on the order 
of 6 YO between two planform orientations is considerably larger than differences 
attributable to sidewall effects or other imperfections. 

From a physical standpoint, we note that the sidewall effects influence planform 
orientation (and selection) only through the periphery of the planform, whereas 
thermal anisotropy of the boundaries acts on the entire planform. Thus, one would 
expect that for a layered assembly having large but finite aspect ratios, the planform 
orientation in the interior would be determined by thermal anisotropy of the 
bounding surfaces, and by sidewall effects near the periphery. One might suppose that 
if the planform orientation determined by thermal anisotropy in the interior was 
inconsistent with the geometry of the container, for example, then the interior and 
peripheral domains ' of orientation might be mediated by a transitiorlal region 
of dislocations, as occurs in Rayleigh-Be'nard convection when two planform 
selection/orientation mechanisms compete in the same layer. 

A final issue regarding the experimental realizability of our results concerns the 
question of whether subcritical instability can occur in multilayered anisotropic 
configurations of the type considered herein. I n  this regard, we note that for isotropic 
multilayered configurations, Lienhard (1987) has compared the results of his linear 
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stability analysis to previous experimental work involving two and three fluid layers 
separated by conducting plates (Hollands & Wright 1983 ; Ulrich 1984). He finds that 
the deviations in Racrlt do not exceed 6%, which is considerably less than the 
experimental uncertainty in this work. (In the work of Hollands & Wright 1983 and 
Ulrich 1984, the onset of convection was determined from Nussclt number versus 
Rayleigh number data, and is considerably less accurate than the interferometric 
determination of Farhadieh & Tankin 1974.) This provides good reason to believe 
that subcritical instability ( a )  does not occur in isotropic multilayered systems, and 
( b )  will not confound the predictions of our linear stability analysis in the anisotropic 
case. 

The authors thank Professors C. F. Chen and J. C. Heinrich for their careful 
reading of the MS report of the second author, on which this work is based. The 
authors gratefully acknowledge support provided by NSF Grant MSM-8451157. 

Appendix A 
In  this Appendix, we define the coefficients 

Here we have defined e+ = exp ( A + , 3 ) ,  e- = exp ( A - , 3 ) ,  e; = exp ( A + , 5 ) ,  and e’ = 

exp b-3). 

Appendix B 
In this Appendix, we define the matrix elements 

(D;-h,2at)2Wn Wmdz;, 

W, cosh (hi a4 z;) dz; + e,, W, sinh (h, a4 2;) dz; 

1 

ql(m,  n) = d,, lo W,( D; - h; W, dz;, 

W, cosh (h, a4 z;) dzi +fpni W, sinh (h, a4 2;) dzi 
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